Bridging the Feature Gaps for Retrieval of Multi-Dimensional Images

نویسندگان

  • Jinman Kim
  • Tom Weidong Cai
  • David Dagan Feng
چکیده

Content-based image retrieval (CBIR) refers to the use of visual features for images retrieval, and has become an attractive approach to managing biomedical image achieves. However, existing CBIR systems are typically designed for 2D single-modality imaging, and are restricted when multi-dimensional images are considered. With the advances in imaging scanners, image complexity and magnitude have rapidly expanded in both the temporal (time) and spatial (space) dimensions, i.e., dynamic PET provides physiological functions of the human body acquired in 3D volumes over multiple time sequences, and dual-modality imaging scanners that sequentially acquires co-aligned functional (PET) and anatomical (CT) images. This manuscript summarizes research in CBIR of multi-dimensional biomedical images with focuses on the feature extraction and retrieval techniques that utilize the information available in the image’s multidimensional data spaces. Applications of multi-dimensional CBIR will be exemplified with our ongoing studies with 4D dynamic PET and dual-modal PET/CT images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک روش مبتنی بر خوشه‌بندی سلسله‌مراتبی تقسیم‌کننده جهت شاخص‌گذاری اطلاعات تصویری

It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

روشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا

In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJHISI

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009